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A high-quality optical microcavity can enhance optical nonlinear effects by resonant recirculation, which provides
a reliable platform for nonlinear optics research. When a soliton microcomb and a probe optical field are coex-
isting in a micro-resonator, a concomitant microcomb (CMC) induced by cross-phase modulation (XPM) will be
formed synchronously. Here, we characterize the CMC comprehensively in a micro-resonator through theory,
numerical simulation, and experimental verification. It is found that the CMCs spectra are modulated due to
resonant radiation (RR) resulting from the interaction of dispersion and XPM effects. The group velocity
dispersion induces symmetric RRs on the CMC, which leads to a symmetric spectral envelope and a dual-peak
pulse in frequency and temporal domains, respectively, while the group velocity mismatch breaks the symmetry of
RRs and leads to asymmetric spectral and temporal profiles. When the group velocity is linearly varying with
frequency, two RR frequencies are hyperbolically distributed about the pump, and the probe light acts as one of
the asymptotic lines. Our results enrich the CMC dynamics and guide microcomb design and applications such as
spectral extension and dark pulse generation. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.486977

1. INTRODUCTION

Cross-phase modulation (XPM) is a common optical nonlinear
effect while two optical fields co-propagate in nonlinear optical
media, which arises from optical intensity-related nonlinear
phase shift [1,2]. For a dispersion-free medium, the probe light
will obtain identical frequency chirps but opposite in sign on
the rising and falling edges of the pump pulse [3]. Therefore,
symmetric optical frequencies are generated around the two
sides of the probe field. In temporal domain, the waveform
of pump pulse is duplicated. This phenomenon has been
widely extended in wavelength conversion in communication
systems [4], synchronization of two mode-locked lasers [5], and
quantum nondemolition measurements [6]. Considering the
dispersion characteristic of an actual optical medium, the sym-
metries of the temporal waveform and spectral envelope of the
XPM effect may be broken due to the influence of group veloc-
ity dispersion (GVD) and group velocity mismatch (GVM)
effects. Meanwhile, the interaction length reduces in the trav-
elling-wave experiments due to the walk-off effect, which weak-
ens the interaction strength of XPM effect [7,8].

The optical field interaction length can be improved in an
optical cavity through resonant recirculation. The recently
developed high-quality micro-resonators provide an ideal plat-
form for nonlinear optics researches [9–11]. A typical applica-
tion is the generation of soliton microcomb (SMC) [12–18],
which promotes the development of soliton physics, such as
the Raman self-frequency shift [19,20], Cherenkov radiation
[21–23], soliton crystals [24–26], breathing solitons [27–29],
and Stokes solitons [30]. When multiple optical fields are con-
comitant in a micro-resonator, a steady state can be reached
through periodic interaction. Once an SMC is formed, the in-
dex of the micro-resonator is periodically modulated by solitons
through Kerr effect. When a probe light is coupled into the
micro-resonator simultaneously, it would interact with SMCs
circularly and results in high-efficiency concomitant micro-
comb (CMC) formation. The CMC has the same repetition
rate as the SMC, which has been employed to extend the spec-
tral range of an SMC [31] and dark pulses formation [32]. Dual
orthogonal microcombs are also experimentally realized by in-
jecting an orthogonal polarized probe light [33]. However, in a
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micro-resonator, the influence of GVD, GVM, and XPM ef-
fects on the CMC generation is still not systematically analyzed.

In this paper, the characteristic of the CMC in a micro-
resonator is theoretically, numerically, and experimentally stud-
ied, where an SMC is used as the pump pulse. We analyze the
linear stability of the probe light and deduce the phase matching
condition (PMC) of the light field evolution considering both
dispersion and XPM effect. The CMC shows modulated spectral
structure under the action of XPM. When the pump pulse and
probe light have different group velocity, the symmetry of the
CMC is broken in both of temporal and frequency domains
due to the influence of GVD and GVM effects. In addition,
we found a universal law of CMCs that the two-frequency wring
distribution of the CMC has a hyperbolic characteristic.

2. THEORY

A. Principle and Model
Figure 1 schematically shows the influence of GVD and GVM
on the CMC formation. When a continuous wave (CW) probe
field and a pump pulse coexist in a micro-resonator, the probe
light is subjected to a nonlinear phase shift due to the self-phase
modulation and XPM (red line in Fig. 1). For a pump–probe
configuration [7], the intensity of the probe wave is much lower
than that of the pump, so the nonlinear phase shift is mainly
caused by XPM effect. The probe wave experiences modula-
tion instability arising from the interaction of dispersion and
XPM effects. Generally, the probe and pump waves have differ-
ent group velocity in a dispersive waveguide, which results in
walk-off effect. The walk-off parameter is indicated by dpa �
1∕υg ,p − 1∕υg ,a. When a micro-resonator has a standard para-
bolic dispersion curve, dpa is linearly varying with frequency.
The gain peaks of modulation instability, termed as resonant
radiations (RRs) [34–37], occur on the intersection points

of the dispersion curve and a line crossing the nonlinear phase
shift point with a slope of dpa. For example, the RRs were sym-
metrically distributed about the probe field when dpa � 0.
Meanwhile, a symmetric pulse pair is formed around the pump
pulse. Otherwise, the symmetry of the CMC is broken when
dpa ≠ 0. When dpa is large enough, the CMC would evolve
into a dark pulse.

To generate a CMC, an SMC is employed as the pump
pulse, which is spontaneously formed by driving a micro-
resonator using a CW laser, while another CW laser is used
as probe light and coupled into the micro-resonator simultane-
ously. The optical field evolution dynamics can be modeled
using the coupled Lugiato-Lefever equations (LLEs) [24],
considering the XPM, GVM, and GVD effects simultaneously,
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where Ap�t, τ� and Aa�t, τ� are the intracavity pump and probe
field envelopes, respectively; t and τ are the slow and fast time,
respectively; tr,p and tr,a are the round trip time of the pump
and probe fields; δp and δa are the phase detuning of the pump

Fig. 1. CMC optical field evolution with walk-off parameter. A nonlinear phase shift is added to the probe field (red line). The optimal phase
matching frequencies have maximum modulation instability gain, which forms RRs. For a micro-resonator with a standard parabolic dispersion
curve, the walk-off parameter dpa is in proportion to the frequency difference between the probe and pump fields. The RRs occur on the intersection
points of the dispersion curve and a line across the phase shift point “a” with slope of d pa. And the CMC optical field evolves from a symmetric
structure to nearly a single peak spectrum along with the increase of jd paj.
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and probe from the adjacent resonance frequencies, respec-
tively; αp and αa represent the power loss per round trip; κp
and κa are the power coupling coefficients; β2,p and β2,a are the
second-order dispersion coefficients; L is cavity length; γp and
γa are nonlinearity coefficients; Pin,p and Pin,a are the external
driving power; rΔ is a scaling factor determined by the differ-
ence of the phase detuning between the pump and the probe
(Δ � δp − δa); rref is the intracavity backscattering coefficient;
the integer m is the mode interval of the pump and probe
waves; f FSR is the free spectral range of the microcavity; and
dpa � 1∕υg ,p − 1∕υg ,a, is the walk-off parameter, where υg ,p
and υg ,a are the group velocity of the pump and probe, respec-
tively. In Eq. (1), the last term represents the modulated back-
ground field arising from the beating signal between the pump
and probe optical waves.

B. Linear Stability Analysis and Phase Matching
Condition
The CMC arises from the frequency chirps induced by the
intensity related nonlinear index modulation. The stable soli-
ton solution can be expressed as Ap�t, τ� � Ap,0 sech�στ� ⋅
exp�iφp�t , τ��, where Ap,0 is the soliton amplitude, σ is the pulse
width factor, and φp�t, τ� is the carrier phase. Frequency
chirps imposed on the probe light can be expressed as

Δω�τ� � 4γaLσA2
p,0 tanh�στ�sech2�στ�: (3)

In order to explore the influence of the GVD effect and
GVM effect on the CMC, the PMC is analyzed through per-
turbation theory [34–38]. Ap,s and Aa,s are the homogeneous
steady-state (HSS) solutions of Eqs. (1) and (2), respectively. As
the intensity of pump is much higher than that of the probe
light, the background modulation term of Eq. (1) is neglected.
The HSS solution of the probe field is
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A perturbation is imposed on the HSS of probe field,
Aa�t, τ� � Aa,s � ΔAa�t, τ�. Taking no account of the trans-
mission loss αa,t , the perturbation term ΔAa�t , τ� satisfies
the following equation:
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where “ * ” denotes complex conjugation.
Equation (5) has a solution with form of ΔAa�t, τ� �

a1 exp�i�K at −Ωaτ�� � a�2 exp�−i�K at − Ωaτ��, where K a and
Ωa are the wavenumber and angular frequency difference
between the perturbation and probe light, respectively; in ad-
dition, a1 and a2 are Stokes and anti-Stokes free wave ampli-
tudes, respectively. To obtain nonzero solutions of Eq. (5), the
dispersion relationship should satisfy
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The frequencies around the optimal phase matching points
[i.e., K a�Ωa� � 0] can obtain maximum nonlinear gain. As the
intensity of the probe light is much lower than the pump pulse,
the self-phase modulation term is neglected, and the PMC can
be expressed as

β2,a
2

Ω2
a − dpaΩa � �2γajAp,sj2 − δa∕L� � 0: (7)

The product of the two solutions of Eq. (7) can be
expressed as

Ωa,1 × Ωa,2 � �2γajAp,sj2 − δa∕L�∕
β2,a
2

: (8)

It clearly shows the product is only related to the micro-
resonator parameters and pump condition. When β2,a is a
constant in the considered frequency range, the product of fre-
quency differences between the probe light and the two RRs
would be a constant.

The angular frequency difference between the pump and
probe light is denoted as ΔΩpa, the angular frequency differ-
ence between the RRs and the pump light is Ωp, and
ΔΩpa � dpa∕β2,a for a certain frequency range where the group
refractive index ng is linearly varying. Considering the relation-
ship Ωa � Ωp � ΔΩpa, the optimal phase matching frequen-
cies related with Ωp can be further expressed as

β2,a
2

Ω2
p −

1

2β2,a
d 2
pa � �2γajAp,sj2 − δa∕L� � 0. (9)

Equation (9) shows Ωp is a hyperbolic function about dpa.
When ng is linearly varying in a certain frequency range, two
RRs are symmetrically distributed on the two sides of the pump
laser. The RRs have the asymptotic lines of Ωp � 	 1

β2,a
dpa �

	ΔΩpa, i.e., the probe light acts as one of the asymptotic
lines of Ωp.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In our experiments, the core device is an add–drop micro-ring
resonator [MRR; see Fig. 2(c)], which is encapsulated in a but-
terfly package with a thermo-electric cooler (TEC) for opera-
tion temperature control [18,24]. The MRR has a free spectral
range of 49 GHz and quality factor of 1.7 × 106, and the
anomalous dispersion characteristic supports bright SMC for-
mation. The calculated group velocity of the MRR is shown in
Fig. 2(d), which is approximatively linearly varying in the fre-
quency range of C� L bands. Figure 2(a) shows the schematic
diagram of the CMC generation experiment. Two tunable nar-
row linewidth lasers are used as pump and probe lasers, which
are amplified by two commercial erbium-doped fiber amplifiers
(EDFAs), respectively.

SMCs are generated using the well-developed laser assisted
thermal balance scheme [18,39]. Less than 4% energy of the
auxiliary light is reflected back by the MRR and used as probe
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field for CMC generation. To observe the CMC, perfect sol-
iton crystals [24] are employed in our experiments, which en-
sures that the CMC occupies different resonant modes with the
SMC for better comparison. Figure 2(b) shows the optical spec-
tra of the CMCs. To maximally eliminate the influence of
GVD and GVM, the probe field is set to the neighboring res-
onant modes of the pump. A CMC with nearly symmetric op-
tical spectrum is observed as shown in region (ii) of Fig. 2(b).
When the probe field is away from the pump laser, the optical
spectral symmetry of the CMC is broken due to the GVD and
GVM of the MRR [regions (i) and (iii) of Fig. 2(b)]. The
positions of RRs are marked in the figure. The products of fre-
quency differences between the probe light and the RRs are
∼−7.95 × 1025, −7.87 × 1025, and −7.27 × 1025 Hz2 for the
three cases, respectively. It is consistent with the theoretical
value of −7.35 × 1025 Hz2 according to Eq. (8).

To verify our theory and investigate the temporal profile of
the CMC, coupled LLEs are employed for simulation, which
are numerically calculated using the fourth-order Runga–Kutta
and split-step Fourier methods. During the simulation, both
pump and probe powers are set to 400 mW, and the other
parameters are consistent with the experimental conditions
(see Appendix C). The frequencies of the probe light are set
at 195.2, 192.1, and 187.3 THz, where the walk-off parameter
dpa is positive, 0, and negative, respectively. When the probe
and pump optical fields have the same group velocity, i.e., the
pump of SMC and probe light locating at the same resonant
modes, the CMC has a symmetric spectral envelope. In tem-
poral domain, a dual-peak pulse is formed, where the two peaks
symmetrically locate at the rising and falling edges of pump
pulse, respectively [Fig. 3(b)]. When dpa is unequal to 0, the
symmetry of the CMC is broken in both spectral and temporal

domains due to the GVD and GVM effects. When jdpaj is large
enough, the waveform of the CMC evolves into dark pulse,
which corresponds to the generation of dark-bright soliton pairs
in Ref. [32]. For a positive dpa, the probe field has larger group
velocity, and the interaction of XPM mainly occurs at the fall-
ing edge. Therefore, a dark pulse forms around the falling edge
of the pump pulse [Fig. 3(a)], while for dpa < 0, the probe light
has slower group velocity and the interaction of XPM mainly
occurs at the rising edge, where a dark pulse forms around the
rising edge of the pump pulse [Fig. 3(c)]. As a comparison,
Figs. 3(d)–3(f ) show the experimental results, whose spectrum
envelopes are consistent with the theoretical results. To be clear,
similar to the spectrum in region (ii) of Fig. 2(b), some weak
secondary combs of the soliton crystal in Figs. 3(b) and 3(e)
occurred due to the fluctuation of pulse power in the temporal
domain, which occupy the same resonant modes as the CMC,
and are difficult to distinguish unless using an ultra-high
resolution optical spectrum analyzer.

In order to intuitively observe the optical spectrum charac-
teristics of the CMC under the condition of different GVD and
GVM, the coupled LLEs are calculated by sweeping the fre-
quency of probe light. During the simulations, the walk-off
parameter dpa is linearly varying with the frequency difference
between the probe and pump fields. Figures 4(a) and 4(b) show
the waterfall diagram of the CMC using the frequencies of the
probe and pump waves as references, respectively. Meanwhile,
the RRs are also plotted according to the PMC based on
Eqs. (7) and (9), which overlap well with the RRs of the sim-
ulation results. The frequencies of RRs are symmetric about the
pump laser, and the probe light is one asymptotic line of the
RRs. Five typical spectra of CMC are shown in Fig. 4(c). Along
with the increase of dpa, the symmetry of the CMC spectra is

Fig. 2. Experimental setup and results. (a) Schematic diagram of the experimental setup. (b) Measured optical spectra when the probe field has
slower, similar, and faster group velocity, where the SMCs are used as pump for CMC generation. (c) Top view of MRR. (d) Calculated group
velocity of the MRR.
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broken, and one of spectral wings far away from the probe at-
tenuates dramatically. When dpa is larger than 2 × 10−12 s∕m,
one of the frequency “wings” is too weak to observe. Therefore,
the CMC represents a single spectral peak and forms a dark
pulse in temporal domain.

It should be clear that the theoretical analysis and simula-
tions are under the condition that the phase detuning δa, com-
prehensive loss αa,t , and driving power Pin,a are constants. As
long as GVD and GVM exist, the symmetry of the CMC will
be broken. The temporal and spectral domain characteristics of
CMC are highly related with the micro-resonator property and
pump condition. In addition, it is well known that integrated
dispersion Dint is often used to calculate the position of disper-
sive radiation [21,31,32], where only the dispersion effect is
considered and the influence of nonlinear effects (such as
XPM) on PMCs is ignored. Therefore, compared to the
method of calculating integrated dispersion Dint , the analytical
method adopted in this paper has higher accuracy. It is also
worth noting that here we only consider probe light co-propa-
gating with pump light through the weak backscattering effect.
For strong backscattering, however, the CMC may cease to ex-
ist due to the annihilation of soliton states and may also be
transformed into breathing solitons. In another work, we dis-
cuss in detail some of the dynamics of the self-oscillation micro-
comb in the case of strong backscattering [29].

4. CONCLUSION

In conclusion, we characterized the CMC comprehensively by
theoretical modeling, numerical simulation, and experimental

verification. The expression of PMC for CMC is precisely de-
rived, and a more universal law about XPM-induced CMC is
discovered. The CMCs are generated in a micro-resonator us-
ing SMCs as the pump and are modulated in both temporal
and spectral domains. The modulation is highly influenced
by the GVD and GVM effects. The symmetry of the CMC
is broken when the probe light and pump have different group
velocity. The products of frequency differences between the
probe light, and two wrings of CMC are a constant when
the group index is linearly varying. Using the pump as refer-
ence, the RRs show hyperbolic distribution. Meanwhile, the
wing far away from the probe field attenuates much faster,
which would be too weak to observe when dpa is large enough.
Phenomenally, the CMC becomes a single frequency wing
structure, which shows a dark pulse in temporal domain. In
fact, it can be inferred from the expression of the PMC that
the number of RR peaks will be larger when higher order
dispersion is considered and that any odd-order dispersion will
result in the symmetry breaking of RR. Our results reveal the
steady-state characteristics of a CMC, which enrich the non-
linear optical processes in a dispersion micro-resonator.

APPENDIX A: HOMOGENEOUS STEADY-STATE
SOLUTION AND FREQUENCY CHIRPS

The HSS solutions of the coupled LLEs are Ap,s and Aa,s, re-
spectively, where jAa,sj2 ≪ jAp,sj2. As the modulated back-
ground field is much weaker than the soliton intensity, we
ignore the last item of Eq. (1) in our analysis. The intensity
of pump and probe fields can be solved:

Fig. 3. Temporal and spectral characteristics of CMC. (a)–(c) Calculated waveforms and spectra of CMC when d pa are positive, 0, and negative,
respectively. (d)–(f ) Measured optical spectra of CMC.
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To study the probe field spectral broadening, the nonlinear
phase shift and frequency chirps caused by the XPM effect

should be analyzed. We assume the pump pulse is a stable
SMC, which can be expressed as

Ap�t, τ� � Ap,0 sech�στ� exp�iφp�t, τ��: (A3)

When only the XPM term is considered, the general solu-
tion of Eq. (2) at t � tr,a is

Aa�t � tr,a, τ� � Aa�t, τ� exp �iφa�τ��: (A4)

A time-dependent nonlinear phase shift is imposed to the
probe field per circle around the microcavity,

φa�τ� � 2γaLjAp�t, τ�j2: (A5)

The frequency chirps caused by the phase shift are
defined as

Fig. 4. Spectral characteristic of CMC. (a) and (b) show the optical spectral evolution along with dpa, which use the frequencies of probe and
pump fields as the reference, respectively. (c) Typical optical spectra of CMC when dpa equals 2.0 × 10−12, 0.5 × 10−12, 0, −0.5 × 10−12 and
−2.0 × 10−12 s∕m, respectively.
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Δω�τ� � −
∂φa�τ�
∂τ

: (A6)

Combining the Eqs. (A3), (A5), and (A6), the frequency
chirp of the probe field is expressed as Eq. (3).

We numerically calculate the frequency chirps of the probe
field for intuitive observation. First, GVD and GVM effects are
not considered. Some simulation parameters are set as
Pin,p � Pin,a � 0.4 W, rΔ � 2.0, δp � 0.016, δa � 0.002,
and jAp,sj2 � 13.08 W. Figure 5(a) shows the temporal profile
of the pump pulse obtained by numerical simulation, and
Fig. 5(b) shows the frequency chirps calculated according to
the Eqs. (A5) and (A6). Figures 5(c) and 5(d) show the tem-
poral and spectral profiles of the probe field, respectively. The
optical spectrum (green) is numerical results based on the
coupled LLEs, while the analytic spectrum is indicated by
the black line, and they agree very well with each other.
The multi-peak structure is caused by constructive or destruc-
tive interference.

APPENDIX B: PERTURBATION THEORY AND
FURTHER VERIFICATION

In order to explore the influence of the GVD and GVM effects
on the spectrum of the probe field, the PMC is analyzed using
perturbation theory [34–38]. The HSS probe field with pertur-
bation is expressed as

Aa�t , τ� � Aa,s � ΔAa�t, τ�: (B1)

Substituting Eq. (B1) into Eq. (2), the HSS probe field with
perturbation satisfies the following equation:
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For a high-quality micro-resonator, we ignore the loss term
αa,t and higher-order terms ΔAa based on linear perturbation
approximation. The perturbation field ΔAa�t, τ� satisfies
Eq. (5), where jAa,sj2 � Aa,sA�

a,s � A�
a,sAa,s. The solution of

Eq. (5) has the following form:
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In addition, the complex conjugate form of the solution is
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Substituting Eq. (B3) and Eq. (B4) into Eq. (5), we obtain

�B − tr,aK a⋅E�⋅a � 0, (B5)

where E �
h
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0 1

i
is a unit matrix, eigenvector a �

h a1
a2

i
,

and B is the coefficient matrix,

Fig. 5. Steady-state characteristics of the CMC. (a) Steady-state pump pulse (soliton pulse). (b) Frequency chirps induced by pump pulse by XPM
effect. (c) Temporal waveform of steady-state CMC. (d) Optical spectrum of steady-state CMC. The modulated spectral envelope is caused by the
constructive or destructive interference.
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B �
"
�−δa � 2γaL�jAa,sj2 � jAp,sj2� � β2,a

2 LΩ2
a − dpaLΩa�; γaL�Aa,s�2

−γaL�A�
a,s�2; �δa − 2γaL�jAa,sj2 � jAp,sj2� − β2,a

2 LΩ2
a − dpaLΩa�

#
: (B7)

To obtain nonzero solution of a, the following condition
needs to be satisfied:

det�B − tr,aK a⋅E� � 0: (B8)

The dispersion relation of the RR process can be obtained as
Eq. (6). The energy peaks of RRs correspond to the PMC [i.e.,
K a�Ωa� � 0]; therefore, the PMC can be expressed by Eqs. (7)
and (9). Interestingly, Ωp is a hyperbolic function about dpa
under suitable conditions.

Next, we investigate the influence of the GVD and GVM
effect on the CMC using the above theoretical analysis and
numerical simulation according to the coupled LLEs. For a
general condition, the pump is the CW field with white noise,

Ap�τ� � Ap,s � rand�τ�⋅10−5, (B9)

where Ap,s is the average intensity of the pump and rand�τ�
represents the noise signal with a random distribution in the
range (0,1). In our simulation, Ap,s ≈ 3.62 W1∕2.

Figures 6(a) and 6(b) show the temporal waveform and
spectrum of the CMC under XPM effect with only GVD effect
being considered. Although the generated spectra are very
weak, two symmetric RRs are still clearly observed. While
the pump is high power pulses, the new generated frequency
components are enhanced and become a CMC as shown in
Figs. 6(c) and 6(d), while the position of the RRs does not vary
with pump power. Next, we consider both GVD and GVM
effects. Figures 6(e) and 6(f ) show the corresponding temporal

Fig. 6. Effect of GVD and GVM on probe field. (a), (c), (e), (g) are the temporal domain distribution of pump field and probe field, and (b), (d),
(f ), (h) are the spectra of probe field. In (a), (b), (e), (f ), the pump field is a noisy CW, and in (c), (d), (g), (h), the pump field is an SMC. In (a)–(d),
only GVD effect is considered, and in (e)–(h), both GVD and GVM effects are considered simultaneously.
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waveform and spectrum, where the symmetry of the CMC
spectrum is broken, and the RRs are no longer symmetrically
distributed around the probe field. Unsurprisingly, the position
of RRs is still not changed as shown in Figs. 6(g) and 6(h) for
high pump power operation.

Finally, to characterize the RRs with varying walk-off param-
eter dpa, we use the form of the pump field in Eq. (B9) to re-
place the soliton pulse field for numerical simulation (Fig. 7).
Figures 7(a) and 7(b) show the waterfall diagram of the spec-
trum of the probe field, which takes the angular frequency of
probe and pump light as the reference center, respectively. It is
found that the RRs can be seen more clearly under the weak
noise background. In addition, the positions and the position
variation of the two RRs are consistent with the previous theo-
retical analysis.

APPENDIX C: SIMULATON PARAMETERS OF
THE MAIN TEXT

We use the microcavity-related parameters in the Table 1.
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